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1 INTRODUCFJON

The adaptive line enhancer (ALE) is an adaptive digital filter designed to separate its
input into two components , one consisting primarily of any narrowband signals present in the
input (hence the term “line enhancer”), and the other consisting primarily of broadband
noise, which is always assumed present in the input. A block diagram of the device is shown
in figure 1, where the above components are denoted by r(k) and e(k), respectively. Since the
detailed operation of the ALE has previously been described [I —4~ , we shall only summarize
its basic properties in this paper , and propose a model of the filter which is convenient for
our further analysis.

The purpose of this paper is to analyze the second-order output statistics, i.e., auto-
correlation function and power spectrum , of the ALE during steady-state operation , with
input samples consisting of weak narrowband signals in white Gaussian noise. “Steady-state
operation” implies that the ALE has a stationary input , and has processed enough data so
that all start-up transients have died out. The only assumption made on the spectral shape of
the narrowband components is that their inverse bandwidths be large with respect to the fil-
ter sampling period f~~. The results are expressed in terms of the ALE parameters , the
second-order statistics of the input , and the optimum (finite-lag) Wiener filter weights for the
problem at hand. It is shown that the ALE output sequence r(k) consists of two uncorrelated

sample rate f Hz
$ 

~~
. e(k)

2p I
W0 W 1

— S S  S

______gr. (~~~~~~~~

__ 
~~~. r (k )

Figure 1. Block diagram of adaptive line enhancer (ALE).
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components: one of them corresponding to the Wiener filtered input , and the other being
the result of passing the input through a “misadjustment filter ” whose properties are described.
The case where the input consists of a deterministic sinusoid in white Gaussian noise is
worked out as an example. Finally, a number of applica tions for these results are described.

2 BASIC PROPERTIES OF THE ALE

The block diagram of figure 1 reveals the ALE to be a particular variation of an adap-
tive noise canceler [ 5 1,  wherein the “reference” or “desired ” response is merely the current
input x(k), and the “primary ” input is a delayed version of x(k). The input x(k) is assumed
to be of the form

x(k) s(k) + n(k), ( 1)

where s(k) is, in general , the sum of a number of narrowban d components having nonoverlap-
ping power spectra , and n(k) is a zero-mean white Gaussian sequence with power v2 which is
independent of s(k). In the lower channel , the delayed input is passed through an adaptive
linear transversal filter whose output r(k) is then subtracted from -x(k) to form an error
sequence e(k). This error sequence is fed back to adjust the filter weights w1(k) according to
the Wid row-Hoff LMS algorithm [51,

w~( k + l ) w1(k) +2p e(k) x ( k — i — ~~), i~~0, l , . . . , L — l , (2)

where ~z is a constant.

The prin ciple of operation is as follows [1 , 2 ] :  the weigh t algorithm in (2) adjusts
the transversal filter weights so as to minimize the mean error power E {e(k)2 }. As a result
of the delay ~~~, the current noise input n(k — ~) to the filter in the lower channel is independ-
ent of the current input x(k) to the ALE. However , ~ is chosen to be somewhat less than
Tmin the minimum correlation time constant of any (narrowband) component of s(k), so
that the current signal input s(k — ~) to the filter is h ighly correlated with the current signal
input s(k) to the ALE. The implicit strategy of the weight adjustment algorithm is then to
cause r(k) to be a prediction of the current value of s(k), based on the data x(k — i — A),
i = 0, 1, . .  . , L — 1, so that in subtracting r(k) from x(k), the mean power in e(k) is mini-
mized. Thus, the filter weights will tend to form a band-pass transfer function about the
center frequencies of any narrowband input components , and will pass relatively little power
at other frequencies. Reference [31 details this effect for the case of multiple sinusoids in
white noise. In the absence of any correlated components in the input x(k), the filter weights
will tend to zero (i.e., the filter tries to turn itself off) , since the mean error power can only
be increased by subtracting a nonzero filter output r(k) from the (uncorrelated) input value
x(k).

3 STEADY-STATE IMPULSE RESPONSE

The convergence behavior of the ALE weight vector

~(k) [w0(k)w1(k).. - wL... 1(k)J
T
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under various assumptions has been discussed by previous authors [1 , 4 1. For purposes of
clarity, we shall briefly discuss the assumptions made in our analysis.

The ALE weight vector w(k + 1) at time k + 1 may be written from (2) as

w(k + l)  w(k) +2p~~(k) [x(k) _ .~T(k) w(k) I ,  (3)

where

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Taking the expectation of both sides of (3), we have

E {w(k + l)} E {w(k)}+2p [E {x(k) x ( k ) } — E  {~(k) xT(k) w(k)} 1. (4)

Since ~y(k) depends on all of the past data x(k — 1), x(k — 2), . .. , the last expectation in the
above equation is not separable , and an exact analysis of the convergence of E {~ (k) }
becomes intractable beyond this point. It is clear from (3), however, that for very small
values of p (relative to the variance of x(k)), the weight vector ~ (k) changes very slowly with
time. Thus, in the steady-state circumstances considered here, one would expect litt le statis-
tical dependence of the weight vector on the relatively brief span of data (L samples) encom-
passed by the vector ~(k). This would particularly be so in the low signal-to-noise ratio
(SNR) case of interest , since most of the power in x(k) is then due to white noise. Hence,
we make the assumption tha t ~ (k) is statistically independent of x(k), so that

E {x(k) xT(k) w(k)} = E {x(k) .~T(k)} E {w(k)}. (5)

Letting 4 and 4 denote the E X L autocorrelation matrix and L X 1 cross-correlation vector ,
respectively, with elements

= - q) and d~ = ~~(p + ~), n ,q = 0, 1 ,.. . , L - 1, (6)

where ~~~~ is the autocorrelation function of the input x(k), we may then write (4) as

E {~ (k + I) )  = E {~ (k) } + 2p [4— 4’ E (~ (k) } 1. (7)

It has been shown in [51 and elsewhere that the above difference equation for
E {w(k) } converges (starting from an arbitrary initial value) as k -~~ oo to ~~, the optimum
Wiener weight vector given by

(8)

provided that 0 <p <X~ ax, where is the largest eigenvalue of the matrix 4’. Also, a
number of authors [ 1 — 5 ] have reported experimental evidence which supports the validity of
the assumption (5), leading to the expression (8). Hence, insofar as this assumption is valid,
the iiean ALE impulse response function in steady-state operation is identical to the corres-
ponding optimum finite-lag Wiener filter impu lse response.

S



Under the assumptions of small p, low SNR, and white Gaussian input noise, an
approximate expression for the steady-state covariance of the ALE weight vector ~ (k) is
derived in [11 as

coy {w(k) } = 
~~min ” (9)

where is the minimum mean-squared error associated with Wiener filterin g of the input,
and I is the identity matrix. ’ An expression for 

~min may be obtained from classical Wiener

filter theory as

~min = E {x(k)2} - dTw* (10)

In summary , the steady-state impulse response of the ALE is a very slowly varying
vector random process with mean value ~~ “ as in (8), and covariance given by ~9) and (10).
By assuming a sufficiently small value of gz , the weight vector may be considered constant
over time intervals which are large relative to the length (in time) of the transversal filter.
This suggests the model shown in figure 2 for the ALE structure during steady-state opera-
tion . The ALE weight vector w is decomposed into its mean value ~~ and a “misadjustment
weight vector” ~ , viz.,

w w ~’+~~, (1 1)

where we have dropped the time index , due to the near-constant behavior of w. The Wiener
weight vector w* is a deterministic quantity given by (8), and the misadjustment weight
vector ~ (so named because it represents a random bias away from w*) is a zero-mean random
vector, with covariance given by (9) and (10), which is assumed statistically independent of
the current data in the filte r. Thus, the ALE output r(k) is the superposition of the Wiener
filter (WF) and misadjustment filter (MF) outputs when excited by the input x(k). This
model will prove convenient in the analysis of the following section.

4 SECOND-ORDER OUTPUT STATISTICS

Referring to figure 2 and equation ( 11), the ALE output r(k) may be expressed math-
ematically as

r(k) r*(k) + 7(k), (12)

‘It ha: been shown In (4/ that a more precise expression for coy {w(k)} may be obtained for certain special inputs, In
particular that of. sinusoid In white noise, which Is used.: an example in section 4. The expression In (4/ contaIns
an added term to that in (9). However. we show in the appendix that the effect of this term is of minor significance.
Hence we shall employ (9) a: the weight vector covariance throughout the main body of the paper.

6
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Figure 2. Equivalent model for steady-state ALE.

where the sequences r (k) and ~?‘(k) are given by

r*( k ) = >  wt x ( k _ i _ ,~) =~~T(k) w*, (13)

(14)

The cross-correlation between r~(k) and 1(k) is

E{r *(k) ir(Q)} E{ T x(k) XT(k) w*}

= E {(w_ w *)~ (k)~ T(k)}w *

=0

by virtue of equation (5). Thus, the second-order statistics of r(k) will be the sum of the
second-order statistics of r~(k) and ?~(k) , which we now derive.

_
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The autocorrelation function ~p*(Q) of r *(k) is given by

L-l L-l
= 

~~~~ w~ w E{x(k-i-~~)x(k+Q-p-~~)}
i 0  p 0

L-l L-1 L-l L-l

~~ wj ” w~~p~( Q + i — p ) +~~~ ~~ v2 wj~w~~ (~ + i -p ) ,
i 0  p 0  i 0  p 0

where ~~(Q) is the autocorrelation function of the narrowband input component , & (- )  denotes
the discrete Dirac delta function , and we have used the hypotheses of independence between
s(k) and n(k) (equation (I) )  and whiteness of the input noise. The latter double summation
may be simplified by manipulation of the summing indices to yield

L— 1 L—1 L—IQ.~--1

~~ wj ’ w ~p5(Q + i — p) + W1 ~~~~~~~ IQI <L — 1,

= 
i 0  p 0  i 0
L-I L-l

> w ’ w~~’5(Q + i — p ) ,  ~~~~~ (1 5)
i=0 p=0

In similar fashion , the au tocorrelation fun ction ~(2) of?(k) is given by

~(Q)=E{7(k) i~(k +Q)}

L-l L-l
= ~~ [P 5( p ) ’ 2 6(~ .4 - i — p ) 1  ~~~~~~~ (16)

i 0  p 0

where we have used the assumption of independence between the MF weights and the data
in the filter. From (9), however,

and thus (16) may be reduced to

~~~~~~~~~~~~~~~~~~~~~~~~ ( 17)

8
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Combining (1 5) and ( 1 7), the autocorrelation function 
~~~~ 

of r(k) is given by

L-1 L-l L-IQ I-l
= >: wj ” wp ~~~ 

+ i - p) + ~~ w~
’ w ’

~1Q p
i 0  p=O i=0

+ ~ ~min L[~p~
(Q) + s’2 6(Q)], IQI < L — I , ( 18a)

and

L-l L-I

~~ w~~w~~Os( Q + i P ) + l ~L~min L[~~( Q ) J ,
i=0 p °  j Q I) L.  ( 18b)

It is worthwhile noting that the first two terms in equation (I 8a) are the re sult of
Wiener filtering of the input signal , while the last term (whkh is due to the misadjustment
noise filtering of the input) is a scaled copy of the input autocorrelation function
Thus, the average effect of the misadjustment noise in the ALE is to produce an output com-
ponent having the same (scaled) autocorrelation function as the input x(k), yet uncorrelated
with the Wiener filter output signal. Since p 

~min L ‘~ 1 in most applications , this MF output
will be greatly attenuated with respect to the input. This provides a further illustration of
the line enhancement property of the ALE, since the MF output is the only component of
r(k) which contains white noise .

The power spectrum 
~~~~ 

of r(k) may be obtained by direct Fourier transformation
of 

~r(2
~ 

Alternatively, one may obtain the respective power spect ra P (w) and P(w) sepa-
rately as follows. Since the WF weight vector w~ defines a discrete linear filter , we may com-
pute its transfer function H*(eJ (&) ) on the unit circle as [6 , p. 21 1

- i r <w < i r . (19)

Then, the power spectrum P*(w) is given by [6, p. 393]

P*(w) = IH*(eJ~
&
~)I

2 
~x~°~)’ 

— <11, (20)

where is the power spectrum of the input x(k). This latter quantity is the Fourier
transform of the input autocorrelation fu nction :

[~~(Q) + ~2 6(2)] e~~~
2, = P5(u) + V 2. (21)

1 
_
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Hence, from (20) and (21),

P*(w) = IH*(ej(I))12 IP5(~,) + v2 1 — ir 
~~ w ~ ~r. (22)

The power spectrum ~(~) may be obtained by inspection from (17) and (2 1). Combining
these two expressions we have

= [IH *(ej~I) )( 2 + ~ ~~~ LI [P 5((jt.)) + v2 ] . (23)

Again , we observe that the output of the ALE consists of the Wiener filtered input signal plus
an uncorrelated component having the same power spectrum (except for scaiing) as the input.

5 AN EXAMPLE

To illustrate the results of the previous section , we shall consider the case where the
ALE input is given by

s(k) A sin(~ 0 k + O ) ,  (24)

where A, ~~~ and 0 are constants. This of course is a nonstationary signal. However, with
the exception of the Wiener filter output replica of s(k), the remaining output components
in r(k) are approximately stationary, and thus we may compute their stationary second-order
output statistics. These results are shown to be compatible with the general case analyzed
previously.

The WF weights for this case are shown in [2 , 3] to have the form (when w0 is several
multiples of ir/L away from zero or ir),

wj~ = cos c~0(i + ~ ), (25)

where A is the delay value shown in figure 1 , and a* is defined in terms of the input SNR,

A2
(26)

2v

by

(
~) SNR1~

a* . (27)
l+ f r ) S N Rin

Note that the WF weights do not depend on the input signal phase 0 , thus enabling the sta-
tionary analysis which follows.

10



I
The expected value of r(k) is given as

E {r(k) } = ~~ wj~ A sin Lw0 (k - i - ~ ) + 0] .  (28)

Substituting (25)  into (28) and using trigonometric identities yields

L— 1
E {r(k)} = a*A sin (w0 k + O) +

~~~~tsin (w0 (k — 2A )+  01

~~~ 

cos 2w01

- cos [w0 (k- 2~ )+ 0] sin 2w01). (29)

For w0L ~ ~r , the second term above is negligible ; hence

E {r(k)} ~ a*A sin (w0 k + 0). (30)

This result is intuitively satisfying : note from (27) that a ~ I when (L/2) SNR~ ~ I , and
thus the mean ALE output is approximately equal to the sinusoidal component present in
the input when adequate SNRin exists.

Let ~~(k , m) be the (nonstationary) autocorrelation function of r*(k) for this exam-
ple. Then from (15),

~p*( k k + Q ) = E { r *(k) r*(k +Q)}

L-l L-l

~~ wj* w~~ps( k _ i_ A, k + Q _ p _ i ~)
i 0  p 0

L— IQI— 1
= +p 2 

~~ w1 w ~~121, f Q t ~~ L — l , (31a)

L-l L-1

~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ IQI~ ”L, (31b)
i— p 0

I I

— — - -—- -~ — --—---- -- -------. — — —



where ~p5(k, m) is the nonstationary autocorrelation function of s(k). Letting p (k, m) be
defined by

L-l L-l

~~ wj
4 w~~p5( k- i -& m - p - A) ,  (32)

i = 0 p 0

and substituting (25) into (31a), we obtain

.2 2
k + 2) + [(L - 121) cos w02

* 
cos w0( L + l )  1

~p (k , k + Q ) = + sin w0 
sin w0(L - IQDJ, 1Ql~~L-l ,

(33a)

lQI~~L, (33b)

as the autocorrelation function r~(k). Again , for w0 L ~~‘ it , only the first term within the
brackets is significant; hence

( *2 2
* I~~~:(k , k + 2) ÷

2a 
2

p 
(L - lQ I ) cos w0Q, QI~~ L - l , (34a)

~p ( k , k +Q)
~~ 1 L

IQI>L. (34b)

Now let ~(k, m) be the autocorrelation function of i~(k). By analogy with equations (16)—

(17), we obtain2

L-l

~(k
,k+Q) p

~min ~~ 
o5(k1~~~,k+Q i )+p~~~~v2 L&(Q). (35)

1=0

However, from (24) we have

A2 1 -
k + 2) —

~~
- [cos w02 - cos (2w0k + w02 + 20)) , (36)

~~~~ and when this expression is substituted into (35) and summed, the sum over the nonstation-
ary second term is negligible by comparison with the first . Hence,

min A2L
~(k , k + 2) � ~~~Q) 

~ 2 
cos w02 + ~A ~min ~~ 1.8(2), (37)

2~, the appemix for a more precise expression.

12
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I
where the double argument in the autocorrelation function is no longer needed. Thus, from
equations (34a , b) and (37), the steady-state ALE output autocorrelation function

k + 2) with a deterministic sinusoid plus white noise input is

2 *2 2a V (L — l Q D cos w0Q
L2

1A2 1
+1.z

~
min Lr~~ 

cos woQ + v 2 o( Q)j ~ I Ql~~ L — l ,
(38a)

* A2
~s
(k,k+Q)+#Emin~~~~~ 0Sd1)O

Q, IQl~ ’L.
(38b)

This particular result was first derived in [7] , and later in [8], by a direct , but somewhat
tedious, method . The above equation verifies that for a sinusoid in white noise, all of the
ALE output components except the Wiener filtered signal output are approximately station-
ary when is several multiples of ir/L away fro m zero or a-.

The value of 
~min in this case is easily computed from (10) and (25) as

2
e . ~~~p2~~~ q_ ~~*~_ (39

The approximation arises fro m neglecting summations over the argument of nonstationary
cosine terms, as was done in arriving at equation (37).

We shall now compute the power spectrum of r(k) in the manner of equation (23) of
the preceding section. The nonstationary input signal (24) may be dealt with by assuming
that the phase 0 of the sinusoid is a uniform random variable on I—It, a-] , thereby resulting in
a stationary sinusoidal input signal with autocorrelation function

A2
= -

~~~ cos w02, (40)

and power spectrum

A2
P5(w) ~~ [8(w — w0) + ô(w + w0)] . (41)

The only effect of this random phase assumption on the ALE output is to convert the Wiener
filtered signal output to a stationary component. From (25), we obtain

* 
. a*2 1 c05 U~~~~~O) l cos uw 4 wo)1

IH (e~”)I
2 = 

L2 - cos (ti, - + I - cos (w + wo)j ’ - a- w

13 
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1~where we have neglected the cross-product of positive- and negative-frequency terms in the
magnitude-squared Fourier transform of (25). Substituting (41) and (42) into (23) then
yields

irA 2 .2Pr(w) —~ -- (a +p~~ .~~L) [8(w - w0)+ 5(w + w0)] + P~ min V2L

a~
2p2 Il cos L.(w w0) 1 - cos L(w + w0~+ I + I, -ir ’~~w ’~~ir.

L2 I I - cos (w - w0) I - cos (w + w0)j

One may verify that thi s expression is identical to that obtained by direct Fourier transfor- )
mation of (38a, b) with the input signal stationarity assumption discussed above .

As described in the previous section , the delta functions in (43) arise from the linear
filtering of the input sinusoid by the WF and MF weights, the white noise term fro m passing
the input white noise through the MF weights, and the narrowband noise term from filtering
the input white noise with the WF weights. The relative magnitudes of the latter two terms
as a function of SNR~ are illustrated in figure 3. Note that the narrowband output noise

SNR
~~

= -50dB

_______________________________ 

-40dB

-35 dB

-30 dB

I I 

-20 dB

0.4 0.45 0.5 0.55 0.6

win

Figure 3. Plots of continuous components of ALE output power spectrum as a function
of SNRin (flat portions of all spectra have same absolute level); L 1024,
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clearly dominates the white output noise as SNR 1~ increases. Since this white noise repre-
sents the bulk of the misadjustment noise , these plots demonstrate that the ALE produces a
very respectable approximation to the Wiener filter , with no a priori knowledge of the input
statist ics, when adequate SNRin exists. For smaller values of SNRin, the attenuation factor
a* in the WF transfer function H~(&’~’) becomes significant , as indicated by (42). From (27),
we observe that 0 ~ a~ < I , and a~ is a nonlinear , monotonically increasing fu nction of the
product L~ SNR1n. If this latter quantity does not greatly exceed unity, then a~ is somewhat
less than unity, and the WF transfer function is attenuated. This result is a property of
finite-length Wiener filtering, and is a consequence of the minimum error power criterion.
The fmite-length WF can reduce the narrowband filtered noise power within the filter pass-
band only by reducing the magnitude of the transfer function at w0. This simultaneously
reduces the filtered signal amplitude , thereby increasing the error power resulting from in-
complete signal cancellation. The minimum total error power is achieved at a compromise
value of a~ (< 1), and this can significantly affect estimates of the sinusoid amplitude
(obtained by spectrum analysis of the ALE output) when SNR1n is too small. Increasing the
filter length L will narrow the filter pass-band about the center frequency, 3 thus improving
the estimate of signal amplitude for a given SNRin. To illustrate the behavior of a*, we have
plotted in figure 4 (solid curve) the ratio

*2
R A  T (44)

— 
~~ ‘mm

as a function of SNRm, using the same value of p 
~min Las in figure 3. This curve demon-

strates both the nonlinear behavior of a~, and the relative magnitudes of the WF and MF
sinusoidal output components, as functions of SNRin. Note that for SNRin greater than

—35 dB, most of the sinusoidal output power is due to the WF signal output , but SNRj~ must
be greater than —20 dB in order to obtain a reasonable amplitude estimate.

As a final illustration of the results in the example, it is interesting to examine the
gain of the ALE as a function of SNRin. The output SNR of the ALE may be obtained from
(30) and (38a) by setting £ = 0, yielding

.2a SNRinSNRout ~2 . (45)

-~~ — + ~~~~~~ L( l  i- SNRin)

The ALE gain G (in dB) is defined by

G ~~ sNR0~t - SNRin (dB), (46)

3Inc,-egsing L also raises the ml,ad/ustment noise level. but this can be compensated by decreasing M. Le.. lengthening the
Initial convergence time. For a steady-state analysis, this latter tEnse is unimportant. 
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Figure 4. Ratio of WF to MF sinusoidal output powers; solid curve given by (44); see
appendix for explanation of dotted curve; L = 1024, 1~ miii = 4  X I ok

and is plotted in figure 5 (solid curve), using the same values of p Emin and Las in figure 3.
Note that for very low values of SNR 1~ , the quantity a~

2 in (45) is near zero, resulting in
negative gain. Physically speaking, the MF output dominates the WF signal output in this
range, as shown in figure 3. As SNR~ increases, the gain becomes positive, reaching a peak
value of approximately 22 dB, and then drops steadily with increasing SNR1n . This behavior
is obvious from (45), since SNRout approaches a limiting value of ~ ~min L) 1 as SNR1~
-+ co• This limiting value of SNR0~t is due to the unavoidable misadjustment noise of the
ALE. Observe, however, the wide and useful range of SNRi~ over which the ALE gain is
positive .

6 DISCUSSION AND APPLICATIONS

The primary significance of our results is their general applicability to arbitrary nar-
rowband input components; i.e., one need not go through the tedious analysis required to
directly compute the second-order output statistics of ti? ALE for each narrowband signal
model of interest. The burden of the analysis is now placed on finding the Wiener filter solu-
tion for the problem at hand. This is generally an easier problem , and is in any event a pre-
requisite for the direct method of computation. Once this is obtained , one may then write
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virtually by inspection, using equations (I 8a, b) and (23). The cases
for which the Wiener filter solution has been obtained include multiple sinusoids in white
noise [31 and a class of narrowband random signals in white noise 19 1.

Applications of the ALE for which our results will be useful include narrowband sig-
nal detection and encoding of noisy sources. In both applications, the ALE might be used in
a prefiltering role, and hence the output power spectrum is of key importance to the further
analysis of such systems. Forthcoming papers will discuss these problems in greater detail .

7 CONCLUSION

The steady-state ALE impulse response has been modeled as the sum of two parallel
impulse responses, one of them being the optimum finite-lag Wiener filter for the narrowband
input components, and the other being a mIsadjustment noise filter with random impulse
response coefficients. The outputs of these parallel channels are uncorrelated. Using this
model , we have derived general expressions for the ALE output autocorrelation function and
power spectrum for an input consisting of narrowband signals in white noise. An example is
given for the case of a single sinusoid in white noise. These results are useful in a number of
ALE applications, including narrowband signal detection and noisy-source encoding.
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APPENDiX

This appendix demonstrates the effect on the ALE output statistics of using the more
precise weight covariance expression in [41 , viz.,

cov { w(k)I = mm + 
~ + (

~
) SNR S (A. 1)

in place of (9), for the sinusoid in white noise input. Here, t~ is the signal autocorrelation
matrix with elements

r i  A2
( s j  ~ 

= COS C~)0 (iP)~ (A.2)

as in (40). Thus, from (A. I) we have

~~i ~ p} ~min &(i-p) + 
2 [i 4(4~ SNRI 

cos ~Uo (i-p) . (A.3)

Substituting (A.3) into (16) and simplifying the resulting expression gives

rA2 1
1~ ~mun LH cos t.~~Q + v2&(Q)I + cos

L 2 
-~ 8[1 ÷(!.)SNR]

+ 
L 

(L-IQI) cos ~~~~ (Q~ < L-l , (A.4)
2 [l +fr)SNR][~ Emin + 

8 [i +(5)sNRJ] 
cos woQ, 12 1 ~~‘ L, (A.5)

as the MF output autocorrelation . Note that the first term in (A.4) above is identical to (37).
The second term represents an additional sinusoidal noise component in the MF output ,
while the last term represents a narrowband noise component having the same autocorrela-
tion function form as the narrowband WF output noise [compare with (34a)1.

In order to illustrate the relative magnitudes of these additional terms in the ALE
output noise, we define two ratios R8 and R~~ as follows. R8 is the ratio of the power of
the first sinusoidal noise term in (A.4) to that of the additional sinusoidal noise term which

18



results from using (A. 1) in place of (9). R NB is the ratio of the power of the WF narrowband
noise output to that of the additional narrowband noise term in the MF output. Then from
(A.4) and (38a), we have

R5 =4 + ( l — a *) SNRi~, (A.5)

RNB =
E

a
L

. (A.6)

Since L ~ 1 in practical applications, the latter ratio will greatly exceed unity over all
the useful range of SNRin. Thus the additional narrowband term resulting from (A. I) is of
virtually no consequence. The ratio R8 is infinite when SNR~ equals zero (since a is then
zero), and it decreases monotonically to a value of unity as as -+ 1 (SNRj~ -+ co). Thus the
power in the additional sinusoidal noise term asymptotically approaches that of the first
sinusoidal noise term for large enough values of SNR~~. This will reduce the ordinates of
figures 4 and 5 by the amount

_ l 0 log1o (l +~~—’~,
\ 8/

with a maximum reduction of —3.01 dB , as shown by the dotted curves in these figures. Al-
though nonnegligible, the influence of this additional noise term is primarily in the high-gain
region of the ALE, where both output sinusoidal noise terms are dwarfed by the sinusoidal
signal output.

In summary , the intent of this appendix has been to show that the more precise
weight covariance expression in [4) for the sinusoid in white noise output effects only minor
modifications to the results obtained by using (9). Since (9) is applicable to more general
inputs (for which the derivation in [4] would be intractable), we consider its use in our
analysis to be justified.
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